Angle Seat Check Valve SRV 303

Nominal size DN 15–80
Nominal size 1/2“–4“
Nominal pressure PN 4–10 bar

Features
- reliable check valve
- hermetically sealed even at low working pressures
- simple maintenance of the check element without the need to remove the valve
- horizontal and vertical mounting (valve piston always vertical)

Additional options on request
- silicone free
- PVC-U with spring

www.asv-stuebbe.com/produkte/armaturen
Pictogram Angle Seat Check Valve SRV 303

Basic Nominal Sizes:

<table>
<thead>
<tr>
<th>DN 8</th>
<th>DN 10</th>
<th>DN 15</th>
<th>DN 20</th>
<th>DN 25</th>
<th>DN 32</th>
<th>DN 40</th>
<th>DN 50</th>
<th>DN 65</th>
<th>DN 80</th>
<th>DN 100</th>
<th>DN 125</th>
<th>DN 150</th>
<th>DN 200</th>
<th>DN 250</th>
<th>DN 300</th>
<th>DN 350</th>
<th>DN 400</th>
</tr>
</thead>
</table>

Connection Material (process connection)

1. PVC-U socket DIN, ANSI, BS, JIS
 female thread Rp 1.4571
 male thread R
 PE100 spigot
2. PP socket DIN
 spigot (IR)
 female thread Rp
3. PVDF socket DIN
 spigot (IR)
4. PVC-U spigot fix
 PP/St. flange DIN, ANSI
 GFK flange DIN
5. PP spigot fix*
 PP/St. flange DIN, ANSI
 GFK flange DIN
6. PVDF spigot fix*
 PP/St. flange DIN, ANSI
7. PVC-U socket DIN fix
 PP/St. flange DIN, ANSI
 GFK flange DIN
8. PP socket DIN fix
 PP/St. flange DIN, ANSI
 GFK flange DIN

* Socket welding spigot

We reserve the right to make technical changes.

Issue 2016.10.20-en
Print No. 300824
TR MA DE Rev001
Angle Seat Check Valve SRV 303

Use
• chemical plant engineering
• industrial plant engineering
• water treatment

Application
• for regulation of a prescribed flow direction - backflow preventer

Flow medium
• Neutral and aggressive fluid or gaseous medium types, provided that the valve components coming into contact with the medium are resistant at the operating temperature in accordance with the ASV resistance guide.

Flow direction
• Always in the direction of the arrow

ASV resistance guide
• www.asv-stuebbe.de/pdf_resistance/300051.pdf

Nominal pressure (H₂O, 20 °C)
• PN 4–10 bar

Medium temperature
• See graphics „Pressure/temperature diagram“

Operating pressure
• See graphics „Pressure/temperature diagram“

Size
• DN 15–80

Housing
• PVC-U, PP, PVDF

Piston
• PVC-U, PP, PVDF

Spring
• Standard for PP and PVDF valves (DN 15–50)
• Spring steel, PTFE-coated

Sealing
• FPM
• EPDM

Actuation
• medium controlled

Mounting position
• vertical or horizontal, piston always upright

Color
• Housing: PVC-U, gray, RAL 7011
• Housing: PP, gray, RAL 7032
• Housing: PVDF, opaque, yellowish-white

Device connection
• see pictograph „Angle seat check valve SRV 303“

Option
• Spring for PVC-U valves of DN 15–50

Note
• Only operate PP valves with a spring
• ASV valve elements of the design „fixed nozzle“ should not be installed by butt-welding. This applies to both heating elements and IR butt welding processes.

Flow medium
• Neutral and aggressive fluid or gaseous medium types, provided that the valve components coming into contact with the medium are resistant at the operating temperature in accordance with the ASV resistance guide.

Flow direction
• Always in the direction of the arrow

ASV resistance guide
• www.asv-stuebbe.de/pdf_resistance/300051.pdf

Nominal pressure (H₂O, 20 °C)
• PN 4–10 bar

Medium temperature
• See graphics „Pressure/temperature diagram“

Operating pressure
• See graphics „Pressure/temperature diagram“

Size
• DN 15–80

Housing
• PVC-U, PP, PVDF

Piston
• PVC-U, PP, PVDF
The pressure/temperature limits of the materials are valid for the stated nominal pressures and a service life of 25 years. These values are guide values for flow medium types which do not negatively impact the physical and chemical characteristics of the valve material. It may be necessary to take diminution factors into consideration. The operating life of the wear parts depends on the conditions of use.
Pressure loss curve (standard values for H₂O, 20 °C)

\[
k_v (l/min) = 95, 180, 325, 480, 1,130, 2,600
\]

\[
\Delta p (bar) \quad Q (l/min)
\]

<table>
<thead>
<tr>
<th>d (mm)</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
<th>50</th>
<th>63</th>
<th>75</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>pS EPDM</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>pS FPM</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>pÖ</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>200</td>
</tr>
</tbody>
</table>

Opening and closing pressure (mbar) with spring

<table>
<thead>
<tr>
<th>d (mm)</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
<th>50</th>
<th>63</th>
<th>75</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>pS EPDM</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pS FPM</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pÖ</td>
<td>200</td>
<td>300</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>200</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Pressure loss and \(k_v \) value

The diagram shows the pressure loss \(\Delta p \) in relation to the flow \(Q \).

Conversion formulas

\[
c_v = k_v \times 0.07
\]

\[
f_v = k_v \times 0.0585
\]

Units:

\(k_v \) [l/min]

\(c_v \) [gal/min] US

\(f_v \) [gal/min] GB

ASV Stübbe GmbH & Co. KG
Hollwieser Straße 5 · 32602 Vlotho, Germany
Phone: +49 (0) 5733-799-0 · Fax: +49 (0) 5733-799-5000
Email: contact@asv-stuebbe.de · Internet: www.asv-stuebbe.com

We reserve the right to make technical changes.

Issue 2016.10.20-en
Print No. 300824
TR MA DE Rev001
Components

DN 15–50

<table>
<thead>
<tr>
<th>Position</th>
<th>Quantity</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Housing</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Piston guidance</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Piston</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Flat sealing ring</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>O-ring</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Cap</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Spring</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Circlip</td>
</tr>
</tbody>
</table>

DN 65–80

<table>
<thead>
<tr>
<th>Position</th>
<th>Quantity</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Housing</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Piston</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Flat sealing ring</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>O-ring</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Cap</td>
</tr>
</tbody>
</table>

We reserve the right to make technical changes.

Issue 2016.10.20-en
Print No. 300824
TR MA DE Rev001