BALL VALVE
C 108

Nominal size DN 10–50
Nominal size 3/8“–2“
Pressure PN 10 bar

Characteristics
• Manual PVC-U ball valve
• For basic applications in water treatment and in surface technology
• Union nuts, union ends and face-to-face dimension (L2) are compatible with ball valve C 200
• Industrial valve

www.asv-stuebbe.com/produkte/armaturen
Actuation

manual

Sealing

EPDM
FPM

Connection

PVC-U

socket

Basic Nominal Sizes:

<table>
<thead>
<tr>
<th>DN 8</th>
<th>DN 10</th>
<th>DN 15</th>
<th>DN 20</th>
<th>DN 25</th>
<th>DN 32</th>
<th>DN 40</th>
<th>DN 50</th>
<th>DN 65</th>
<th>DN 80</th>
<th>DN 100</th>
<th>DN 125</th>
<th>DN 150</th>
<th>DN 200</th>
<th>DN 250</th>
<th>DN 300</th>
<th>DN 350</th>
<th>DN 400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Connection Material (process connection)

PVC-U: socket DIN*

* incl. DN 10

We reserve the right to make technical changes.

Issue 2017.12.12-en
Print-No. 301368
TR MA DE Rev001
Ball Valve C 108

Connection socket

<table>
<thead>
<tr>
<th>d (mm)</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>32</th>
<th>40</th>
<th>50</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN (mm)</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>32</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>DN (inch)</td>
<td>3/8</td>
<td>1/2</td>
<td>3/4</td>
<td>1</td>
<td>1 1/4</td>
<td>1 1/2</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>68.0</td>
<td>68.0</td>
<td>88.0</td>
<td>88.0</td>
<td>108.0</td>
<td>108.0</td>
<td>118.0</td>
</tr>
<tr>
<td>H</td>
<td>47.0</td>
<td>47.0</td>
<td>58.0</td>
<td>66.0</td>
<td>78.0</td>
<td>84.0</td>
<td>105.0</td>
</tr>
<tr>
<td>L2</td>
<td>56.0</td>
<td>56.0</td>
<td>65.0</td>
<td>71.0</td>
<td>85.0</td>
<td>89.0</td>
<td>101.0</td>
</tr>
<tr>
<td>L3</td>
<td>64.0</td>
<td>61.0</td>
<td>72.0</td>
<td>79.0</td>
<td>94.0</td>
<td>96.0</td>
<td>108.0</td>
</tr>
<tr>
<td>D1</td>
<td>50.0</td>
<td>50.0</td>
<td>59.0</td>
<td>70.0</td>
<td>86.0</td>
<td>100.0</td>
<td>125.5</td>
</tr>
</tbody>
</table>

All dimensions in mm / * dimensions in inch

We reserve the right to make technical changes.

Issue 2017.12.12-en
Print-No. 301368
TR MA DE Rev001
Ball Valve C 108

Application
- Basic applications in water treatment and in surface technology

Intended use
- For shutting off pipeline systems

Flow medium
- Neutral and aggressive fluid or gaseous media free of solid particles, provided that the valve components coming into contact with the media are resistant at the operating temperature in accordance with the ASV Stübbe resistance guide.

Testing
- Tests/inspections according to ISO 9393 and fatigue test according to DIN EN 16135
- Leakage rate A tested according to DIN EN 12266

Nominal pressure (H₂O, 20 °C)
- PN 10

Medium temperature
- See graphics „Pressure/temperature diagram“

Operating pressure
- See graphics „Pressure/temperature diagram“

Size
- DN10–50

Housing
- PVC-U

Stem
- PVC-U

Ball
- PVC-U

Ball sealing
- PTFE

Sealing
- EPDM, FPM

Actuation
- With hand lever

Mounting
- As required

Connection
- Union featuring a connection thread suitable for plastic materials

Colour
- Housing: PVC-U, grey RAL 7011
- Hand lever: ASA, orange RAL 2004

Pressure/temperature diagram

The pressure/temperature limits of the materials are applicable for the stated nominal pressures and a computed operating life factor of 25 years. These are standard values for harmless media (DIN 2403), to which the valve material is resistant. It may be necessary to take diminution factors into consideration. The durability of wear parts depends on the operating conditions of the application.

We reserve the right to make technical changes.

Issue 2017.12.12-en
Print-No. 301368
TR MA DE Rev001
Pressure loss curve (standard values for H₂O, 20 °C)

\[\Delta p = \text{pressure loss} \]
\[Q = \text{flow} \]

Pressure loss and \(k_v \) value

The diagram shows the pressure loss \(\Delta p \) in relation to the flow \(Q \).

Flow characteristic

\[\text{FR} (\%) = 100 \left(1 - \frac{\text{VO}}{100}\right) \]

\(\text{VO} = \text{valve opening} \)
\(\text{FR} = k_v \text{value} \)

Components

<table>
<thead>
<tr>
<th>Position</th>
<th>Quantity</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Housing</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Ball</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Stem</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Union threaded neck</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Hand lever</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Union end</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Union nut</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>Ball seal</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>O-ring</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>O-ring</td>
</tr>
</tbody>
</table>